Bellringer

- Write each decimal as a fraction in simplest form.

1. 0.82
2. 0.5

- Write the fraction as a decimal.

3. $\frac{3}{4}$

1.1 Rational and Irrational Numbers

8.NS. 1

Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number

8.NS. 2

Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram and estimate the value fo expressions

Vocabulary
Rational Number - is any number that can be written as ratio $\frac{a}{b}$ where $a+b$ are integers and $b \neq 0$

$$
\text { ex: } 6=\frac{6}{1} \cdot 5=\frac{5}{10}=\frac{1}{2}
$$

Terminating Decimal - has a finite (definite) \# of digits exp. $25=\frac{1}{4}$
Repeating Decimal - has block of 1 or more repeating digits ex: $\frac{1}{3}=.3333 \overline{3}$
Irrational Number - Number that is not rational

$$
e x: \pi
$$

(a)

B $\frac{1}{3}$
3

$$
\begin{array}{r}
4 \longdiv { . 2 5 } \\
-.80 \\
\hline \frac{80}{20} \\
\frac{20}{0}
\end{array}
$$

.333
$3 \longdiv { 1 . 0 0 0 }$
$9 \downarrow$
10
$9 \downarrow$
10

ADDITIONAL EXAMPLE 1
Write each fraction as a decimal.

$$
A \frac{2}{5} \quad .4
$$

$$
\begin{gathered}
\begin{array}{c}
.555 \\
9 \begin{array}{|c}
5.500 \\
45 \downarrow \\
50
\end{array} \\
\frac{45}{50}
\end{array}
\end{gathered}
$$

Q Write each fraction as a decimal.

1. $\frac{5}{11} \cdot \overline{45}$
2. $\frac{1}{8} \xrightarrow{.125}$
3. $2 \frac{1}{3} 2.3$
(1) $11 \begin{gathered}\frac{.4545}{5.0000} \\ \frac{44 \downarrow}{60} \\ \frac{55}{50} \\ \frac{44}{60} \\ 55\end{gathered}$
(2) $8 \longdiv { 1 0 0 0 0 }$

$$
\frac{825}{1000 \div 25}=25=\frac{33}{40}
$$

B $0 . \overline{37}$

$$
\begin{aligned}
& x=\overline{37} \\
& 100(x)=100(. \overline{37}) \\
& 100 x=37 . \overline{37} \\
& \frac{-x}{99}-. \overline{37} \\
& \frac{99 x}{99}=\frac{37}{99}
\end{aligned}
$$

ADDITIONAL EXAMPLE 2 Write each decimal as a fraction in simplest form.

A 0.355

$$
\frac{355 \div 3}{1000 \div 5}=\frac{71}{200}
$$

$$
\begin{aligned}
& \text { B } 0 . \overline{43} \quad x=\frac{43}{99} \\
& x=. \overline{43} \\
& 100(x)=100(. \overline{43}) \\
& 100 x=43 . \overline{43} \\
& -x \quad-.43 \\
& \frac{99 x}{99}=\frac{43}{99}
\end{aligned}
$$

4. 0.12 $3 / 25$
\qquad 5. $0 . \overline{57}$ 19/33

$$
\frac{12 \div 2}{100 \div 2}=\frac{6}{56 \div 2}=\frac{3}{25}
$$

$$
x=. \overline{57}
$$

$$
100(x)=100(57)
$$

$$
\frac{4 \div 2}{10 \div 2}=\frac{2}{5}
$$

$$
\begin{aligned}
& 100 x=57 . \overline{57} \\
& -x \quad-.57 \\
& \frac{95 x}{96}=\frac{57}{99} \quad x=\frac{57}{99} \div 3
\end{aligned}
$$

Vocabulary
Square root - opposite of squaring; There are 2 square roots for every
ex: $5^{2}=25$

$$
\sqrt{25}= \pm 5
$$

$$
5 \times 5 \text { squaring }
$$ positive \#

$$
\begin{aligned}
& -5^{2}=25 \\
& -5 x-5
\end{aligned}
$$

principal square root - positive Square root
perfect square - has square roots that are integers ex: $\sqrt{64}= \pm 8$
Cube root - opposite of cubing; There is 1 cube root for every positive \#

$$
\begin{aligned}
\text { ex: } 2^{3}=\begin{array}{cr}
2 \times 2 \times 2=8 \\
\text { cubing } & \begin{array}{l}
8 \\
8
\end{array} \\
\text { cube coot }
\end{array}
\end{aligned}
$$

perfect cube has cube root that is an integer

Perfect Square / Perfect Cubes

$$
\begin{aligned}
& \sqrt{1}= \pm 1 \\
& \sqrt{4}= \pm 2 \\
& \sqrt{9}= \pm 3 \\
& \sqrt{16}= \pm 4 \\
& \sqrt{25}= \pm 5
\end{aligned}
$$

$$
\sqrt[3]{1}=1
$$

$$
\sqrt[3]{8}=2
$$

$$
\sqrt[3]{27}=3
$$

$$
\sqrt[3]{64}=4
$$

Solve each equation for x.
(A) $x^{2}=121$

$$
\begin{array}{r}
\sqrt{x^{x}}=\sqrt{121} \\
x=\sqrt{121} \\
x= \pm 11
\end{array}
$$

c

$$
\begin{aligned}
& 729=x^{3} \sqrt[3]{729} \\
&=\sqrt[3]{x} \\
& \sqrt[3]{729}=x
\end{aligned}
$$

$9=x$
B $x^{2}=\frac{16}{169}$

$$
\begin{aligned}
& \sqrt{x^{x}}=\sqrt{\frac{16}{169}}=\frac{\sqrt{16}}{\sqrt{169}} \\
& x= \pm \frac{4}{13}
\end{aligned}
$$

D

$$
\begin{aligned}
& x^{3}=\frac{8}{125} \sqrt[3]{x^{35}}=\sqrt[3]{\frac{8}{125}}=\sqrt[3]{\sqrt[3]{125}} \\
& x=\frac{2}{5}
\end{aligned}
$$

ADDITIONAL EXAMPLE 3 Solve each equation for x.
A $x^{2}=324$
B $x^{2}=\frac{25}{144}$
(A)

$$
\begin{aligned}
& \sqrt{x^{x}}=\sqrt{324} \\
& x= \pm 18
\end{aligned}
$$

$$
\text { (B) } \begin{gathered}
\sqrt{x^{2}}=\sqrt{\frac{25}{142}} \\
x= \pm \frac{5}{12}
\end{gathered}
$$

YOUR TURN
Solve each equation for x.
7. $x^{2}=196 \quad x= \pm 14$
8. $x^{2}=\frac{9}{36} \quad x= \pm \frac{3}{16}$
9. $x^{2}=512 \quad x=8$
10. $x^{2}=\frac{56}{34} \quad x=\frac{4}{7}$
(7)

$$
\begin{array}{ll}
\sqrt{x^{2}}=\sqrt{196} & 8 \sqrt{x^{2}}=\sqrt{\frac{9}{256}}=\sqrt{9} \\
\sqrt{256} \\
x=\sqrt{196} & x=\frac{\sqrt{9}}{\sqrt{259}} \\
x= \pm 14 & x= \pm \frac{3}{16}
\end{array}
$$

(9) $\sqrt[3]{x^{3}}=\sqrt[3]{512}$
(12) $x^{3}=\sqrt[3]{\frac{64}{343}}$
$x=\sqrt[3]{512}$
$x=\sqrt[3]{\frac{64}{343}}$
$x=8 \quad x=\frac{4}{7}$

Estimate the value of $\sqrt{\mathbf{2}}$.
A Since 2 is not a perfect square, $\sqrt{2}$ is irrational.
B To estimate $\sqrt{2}$, first find two consecutive perfect squares that 2 is between. Complete the inequality by writing these perfect squares in the boxes.

C Now take the square root of each number.
D Simplify the square roots of perfect squares.
$\sqrt{2}$ is between \qquad and \qquad .

$$
\begin{array}{ll}
\sqrt{1}=1 & \sqrt{16}=4 \\
\sqrt{4}=2 & \sqrt{25}=5 \\
\sqrt{9}=3 &
\end{array}
$$

Estimate the value of the irrational numbers
use perfect squares to help

\[

\]

(E) Estimate that $\sqrt{2} \approx 1.5 . \quad$| $\sqrt{2}$ | 1.5 | | | |
| :--- | :--- | :--- | :--- | :--- |
| 0 | | 2 | 3 | 4 |

F To find a better estimate, first choose some numbers between 1 and 2 and square them. For example, choose $1.3,1.4$, and 1.5 .
$1.3^{2}=$
$1.4^{2}=$ \qquad $1.5^{2}=$ \qquad
Is $\sqrt{2}$ between 1.3 and 1.4? How do you know?

Is $\sqrt{2}$ between 1.4 and 1.5? How do you know?
$\sqrt{2}$ is between \qquad and \qquad so $\sqrt{2} \approx$ \qquad -

G Locate and label this value on the number line.

G.P. $p^{12}(1-19)$
I.P. $P^{13}(20-27)$

Guided Practice

Q Write each fraction or mixed number as a decimal. (Example 1)

1. $\frac{2}{5} \cdot 4$
2. $\frac{8}{9}$
3. $3 \frac{3}{4}$
4. $\frac{7}{10}$ \qquad 5. $2 \frac{3}{8}$ \qquad 6. $\frac{5}{6}$ \qquad

See all the

selected answers.

Write each decimal as a fraction or mixed number in simplest form. (Example 2)
7. 0.675
10. $0 . \overline{4}$
$10 x=4.4$
$-x-.4$
$9 x=4$
$x=\frac{4}{9}$
8. 5.6 \qquad
11. $0 . \overline{26}$

$x=$ \qquad $x=$ \qquad

