Bellringer

The table represents the number of computer tablets sold. Tell whether the rates of change are constant or variable.

Week	1	3	4	8
Number sold	32	96	128	224

To answer this question, log on to www.socrative.com. Select: Student Login
Room Name: PAYNE1869

3.3 Interpreting the Unit Rate as Slope

8.EE. 5

Graph proportional relationships, interpreting the unit rate as the slope of the graph.
Compare two different proportional relationships represented in two different ways

Which ramp is up to code?

Ripley's Aquarium of the Smokies

Vocabulary
unit rate

- is a rate in which the second quantity in the comparison is one whit ex: mph \rightarrow miles per hour

EXPLORE ACTIVITY

A storm is raging on Misty Mountain. The graph shows the constant rate of change of the snow level on the mountain.

A Find the slope of the graph using the

$\begin{array}{lll}x_{1} & y_{1} & x_{2} \\ (1,2) & y_{1} \\ (5,10)\end{array}$ points $(1,2)$ and $(5,10)$. Remember that the slope is the constant rate of change.

$$
m=\frac{10-2}{5-1}=\frac{8}{4}=\frac{2 \text { inches }}{1 \text { hours }}
$$

B Find the unit rate of snowfall in inches per hour. Explain your method.
2 inches/how

C Compare the slope of the graph and the unit rate of change in the snow level. What do you notice?

Graphing Proportional Relationships

- you can use a table and a graph to find the wit rate and slope that describe proportional relationships
- The constant for proportional relationships is the same as slope

EXAMPLE 1 (Real
Every 3 seconds, 4 cubic feet of water pass over a dam. Draw a graph of the situation. Find the unit rate of this proportional relationship.
sTEP 1 Make a table
STEP 2 Draw a

x	\sec	3	6	9	12
y	ft^{3}	4	8	12	16

step 3 Find Slope

ADDITIONAL EXAMPLE 1
Every 10 seconds an escalator step rises 6 feet. Draw a graph of the situation. Find the unit rate of this proportional relationship.

y	$f x$	6	12	18	24	30
	5	10	20	30	40	50

$$
\begin{array}{r}
\prod_{\rightarrow 20}=\frac{6}{10}=\frac{3}{5} \mathrm{ft} \\
\frac{3 / 5}{\frac{3}{5}} \mathrm{ft} \text { per second }
\end{array}
$$

YOUR TURN
2. Tomas rides his bike at a steady rate of 2 miles every 10 minutes. Graph the situation. Find the unit rate of this proportional relationship.
\qquad
$\frac{1}{5}$ mile par mints
\qquad

miles	1	\sim	4	6
min.	5	10	20	30

Tomas's Ride

ADDITIONAL EXAMPLE 2
The equation $y=1.2 x$ represents the rate, in beats per second, that Lee's heart beats. The graph represents the rate that Nancy's heart beats.

Determine whose heart is beating at a faster rate.

$$
y=1<x
$$

Lee
1.2 beats $/ \mathrm{sec}$.

$$
\frac{5}{4} \text { beats }
$$

$5 / 4$ beats/sec

YOUR TURN
4. The equation $y=375 x$ represents the relationship between x, the time that a plane flies in hours, and y, the distance the plane flies in miles for Plane A. The table represents the relationship for Plane B. Find the slope of the graph for each plane and the plane's rate of speed. Determine which plane is flying at a faster rate of speed.

Time (h)	1	2	3	4
Distance (mi)	425	850	1275	1700

Plane $A: \frac{375}{T}, 375 \mathrm{mph} P$ lane $B: \frac{425}{T}, 425 \mathrm{mph}$

Guided Practice

Give the slope of the graph and the unit rate.

1. Jorge: 5 miles every 6 hours

2. Akiko

Time (h)	4	8	12	16
Distance (mi)	5	10	15	20

Akiko

3. The equation $y=0.5 x$ represents the distance Henry hikes, in miles, over time, in hours. The graph represents the rate that Clark hikes. Determine which hiker is faster. Explain. (Example 2)
\qquad
\qquad
\qquad

Write an equation relating the variables in each table.

4. | Time (\boldsymbol{x}) | 1 | 2 | 4 | 6 |
| :--- | :---: | :---: | :---: | :---: |
| Distance (\boldsymbol{y}) | 15 | 30 | 60 | 90 |
5. | Time (\boldsymbol{x}) | 16 | 32 | 48 | 64 |
| :--- | :---: | :---: | :---: | :---: |
| Distance (\boldsymbol{y}) | 6 | 12 | 18 | 24 |

$$
\begin{aligned}
& \text { Chl } 1.6 \\
& \text { 1P } 7.13 \\
& p 86-88
\end{aligned}
$$

