Bellringer

Graph the following equation:

$y=-\frac{3}{2} x-2$

4.4 Proportional and Nonproportional Situations

8.F. 2

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal expression)
8.F. 3

Interpret the equation $y=m x+b$ as defining a linear function, whose graph is straight line; give examples of functions that are not linear

8.F. 4

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Distinguish Between Proportional and Nonproportional Situations Using a Graph

- Is it linear?
|byes: proportional or norproportional
no: nonproportioncl
- Does it cross the origin?

Les: proportional
ho: nonproportional

EXAMPLE 1 (Real world
The graph shows the sales tax charged based on the amount spent at a video game store in a particular city. Does the graph show a linear relationship? Is the relationship proportional or nonproportional?

The graph shows a linear
proportional relationship

ADDITIONAL EXAMPLE 1
The graph shows the water level as a bathtub fills. Does the graph show a linear relationship? Is the relationship proportional or nonproportional?

YOUR TURN

Determine if each of the following graphs represents a proportional or nonproportional relationship.
1.

2.

Distinguish Between Proportional and Nonproportional Situations Using an Equation

$$
\begin{array}{rl}
\text { - Does it have } a & " b{ }^{\prime} \\
& y=m x+b \\
b=0 \rightarrow & \text { proportional } \\
b \neq 0 & \rightarrow \text { nonproportional }
\end{array}
$$

EXAMPLE 2
The number of years since Keith graduated from middle school can be represented by the equation $y=a-14$, where y is the number of years and a is his age. Is the relationship between the number of years since Keith graduated and his age proportional or nonproportional?

Linear nomproportional relationship with
a y-intercept of -14

ADDITIONAL EXAMPLE 2
The change in a test score for each incorrect answer is represented by the equation $y=-\frac{x}{2}$, where x is the number of incorrect answers. Is the relationship between the number of incorrect answers and the change in score proportional or nonproportional?

$$
\begin{aligned}
y=-\frac{x}{2} \Rightarrow y & =-\frac{1}{2} x \\
y & =-\frac{1}{2} \times \frac{x}{1}=-\frac{x}{2}
\end{aligned}
$$

roportionel

YOUR TURN

$$
y=m x+b
$$

Determine if each of the following equations represents a proportional or nonproportional relationship.
5. $d=65 t$
7. $n=450-3 p$

Nonproportioncl
6. $p=0.1 s+2000$
8. $36=12 d$

Nonproportional
Non proportional

Distinguish Between Proportional and Nonproportional Situations Using a Table

- Does it have a constant $\left(k=\frac{y}{x}\right)$?
\rightarrow yes'. proportional σ linear
$\rightarrow n_{0}$: nouproportional, could be linear
- If it is nonproportional
\rightarrow Check for constant rate of Change
L yes. linear, non proportional no: nonlinear, nouproportional

EXAMPLE 3
The values in the table represent the numbers of U.S. dollars three tourists traded for Mexican pesos. The relationship is linear. Is the relationship proportional or nonproportional?

U.S. Dollars Traded	Mexican Pesos Received
130	1,690
255	3,315
505	6,565

$$
\begin{gathered}
k=\frac{y}{x} \\
k=\frac{1690}{130}=\frac{13}{1} \\
k=\frac{3315}{255}=\frac{13}{1} \\
k=\frac{6565}{505}=\frac{13}{1}
\end{gathered}
$$

ADDITIONAL EXAMPLE 3
The table shows the distance of a train from a station and the time it will take to arrive. The relationship is linear. Is it proportional or nonproportional?

$$
k=\frac{y}{x}
$$

x	Time (min)	25	45	65
y	Distance (mi)	15	30	45

no constant

$$
\begin{aligned}
& k=\frac{15}{25} \quad k=\frac{30}{45} \quad k=\frac{45}{65} \\
& \frac{3}{5} \quad \frac{6}{9}=\frac{2}{3} \quad \frac{9}{13}
\end{aligned}
$$

YOUR TURN
Determine if the linear relationship represented by each table is a proportional or nonproportional relationship.

$$
K=\frac{y}{y}
$$

9.

x	y
2	30
8	90
14	150

$$
\begin{aligned}
& \frac{30}{2}=\frac{15}{1} \\
& \frac{90}{8}=\frac{45}{4} \\
& \frac{150}{14}=\frac{75}{7}
\end{aligned}
$$

Nonproportromal
no constant
10.

proportional

Comparing Proportional and Nonproportional Situations

EXAMPLE 4 (eat
A A laser tag league has the choice of two arenas for a tournament. In both cases, \boldsymbol{x} is the number of hours and \boldsymbol{y} is the total charge. Compare and contrast these two situations.

Arena B
Arena A *

$$
y=225 x
$$

Arena A :
Arena B :
$\$ 225 / \mathrm{hr}$

$$
y=200 x+50
$$

ADDITIONAL EXAMPLE 4

A John has a choice of hiring two plumbers. In both cases, x is the number of hours and y is the total charge in dollars. Compare and contrast these two situations.

Plumber A:

$$
\begin{aligned}
& y=75 x \\
& \$ 75 / \mathrm{hr}
\end{aligned}
$$

Plumber A: $y=75 x$
Plumber B:

YOUR TURN

11. Compare and contrast the following two situations.

Test-Prep Center A	Test-Prep Center B
The cost for Test-Prep Center A is given by $c=20 h$, where c is the cost in dollars and h is the number of hours you attend.	Test-Prep Center B charges $\$ 25$ per hour to attend, but you have a $\$ 100$ coupon that you can use to reduce the cost.

(1) Finish Graph Activity

$$
\begin{array}{r}
\text { (2) } \quad \text { GP } 117-120 \\
\\
(1-13)
\end{array}
$$

