Bellringer

1. State whether the relationship between x and y in $y=2 x-3$ is proportional or nonproportional. Then create a function table to represent it.

6.3 Comparing Functions

8.F. 2

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)

8.F. 4

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Comparing a Table and an Equation

To compare, get the equation that is represented by the talk

EXAMPLE 1
Josh and Maggie buy MP3 files from different music services. The monthly cost, \boldsymbol{y} dollars, for \boldsymbol{x} songs is linear. The cost of Josh's service is $\boldsymbol{y}=0.50 x+10$. The cost of Maggie's service is shown below.

A Write an equation to represent the monthly cost of Maggie's service.
(1) Find slope $=m=\frac{\Delta y}{\Delta x}=\frac{4.95}{5}=.99$
(2) Find

$$
\begin{aligned}
y \text {-int }= & 4.95=.99(5)+b \\
& 4.95=4.95+b \\
& \frac{4.95-4.95}{0}=b
\end{aligned}
$$

(3) Write equation
$+4.95$

$$
y=.99 x
$$

B Which service is cheaper when 30 songs are downloaded?
J :

$$
\begin{aligned}
y & =.50 x+10 \\
& =.5(30)+10 \\
& =25.00
\end{aligned}
$$

$$
\begin{aligned}
M: y & =.99 x \\
& =.99(30) \\
& =29.70
\end{aligned}
$$

ADDITIONAL EXAMPLE 1
Melanie and Patrick have different phone services. The relationship of the monthly cost, y dollars, to send or receive x text messages, is a linear function. The cost of Patrick's texting is described by $y=0.03 x+5$. The cost of Melanie's texting is shown in the table.

A Write an equation to represent Melanie's monthly texting cost.

$$
\begin{aligned}
& m= \frac{\Delta y}{\Delta x}=\frac{1.25}{5}=.25 \\
& b= 1.25=.25(5)+b \\
& 1.25=1.28+b \\
& \frac{-1.25}{v}=-1 / 25
\end{aligned} \quad y=.25 x
$$

B Which service is cheaper when 50 texts are sent or received in one month?

$$
\begin{aligned}
p: y & =.03(50)+5 \\
& =6.50 \\
m: y & =.25(50) \\
& =12.50
\end{aligned}
$$

YOUR TURN

1. Quentin is choosing between buying books at the bookstore or buying online versions of the books for his tablet. The cost, y dollars, of ordering books online for x books is $y=6.95 x+1.50$. The cost of buying the books at the bookstore is shown in the table. Which method of buying books is more expensive if Quentin wants to buy 6 books?

Cost of Books at the Bookstore						
Books, \boldsymbol{x}	1	2	3	4	5	6
Cost (\$), \boldsymbol{y}	7.50	15.00	22.50	30.00	37.50	45.00
7.50						

$$
\begin{aligned}
B: \$ 45.0 \\
O: \begin{aligned}
y & =6.95(6)+1.50 \\
& =443.20
\end{aligned}
\end{aligned}
$$

EXPLORE ACTIVITY 1

EXPLORE ACTIVITY 2

Guided Practice

Doctors have two methods of calculating maximum heart rate. With the first method, maximum heart rate, y, in beats per minute is $y=\mathbf{2 2 0}-x$, where x is the person's age. Maximum heart rate with the second method is shown in the table. (Example 1)

Age, \boldsymbol{x}	20	30	40	50	60
Heart rate (bpm), \boldsymbol{y}	194	187	180	173	166

1. Which method gives the greater maximum heart rate for a 70 -year-old?
2. Are heart rate and age proportional or nonproportional for each method?
